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Application Note #12 
Ultraviolet Light Disinfection Data Sheet 

 

Ultraviolet light (UV) has been used for disinfection since the 
mid-20th century, with beginnings even earlier when sunlight 
was investigated for bactericidal effects in the mid-19th 
century. It’s used for drinking and wastewater treatment, air 
disinfection, the treatment of fruit and vegetable juices, as 
well as a myriad of home devices for disinfecting everything 
from toothbrushes to tablet computers. Within research 
facilities, UV has been an option when purchasing biological 
safety cabinets for years and can also be used within 
ductwork.  

 
UV technology has advanced in recent years to become 
more reliable. Ballasts being used today are able to 
maintain the power output of UV bulbs for far longer than in 
the past. UV bulbs now have rated lifespans in the 
thousands-of-hours. This has allowed UV systems to become 
more viable for wide ranging use. 
 
The use of UV has recently grown within the healthcare industry as an invaluable option for preventing 
the spread of hospital acquired infections, providing disinfection of room surfaces in addition to existing 
cleaning methods. Since the pandemic of COVID-19 caused by the novel coronavirus SARS-CoV-2, more 
consumers are interested in purchasing ultraviolet light products to disinfect surfaces in the home, office, 
transit, and other commercial spaces. The use of ultraviolet light for surface disinfection within an array 
of facilities has started to increase due to its ease of use, short dosage times, and broad efficacy. 
 
How Does UV Work? 
Ultraviolet light exists within the spectrum of light 
between 10 and 400 nm. The germicidal range 
of UV is within the 100-280nm wavelengths, 
known as UV-C, with the peak wavelength for 
germicidal activity being 265 nm. This range of 
UV light is absorbed by the DNA and RNA of 
microorganisms, which causes changes in the DNA 
and RNA structure, rendering the microorganisms 
incapable of replicating. A cell that can’t 
reproduce is considered dead; since it is unable 
to multiply to infectious numbers within a host. 
This is why UV disinfection is sometimes called 
ultraviolet germicidal irradiation (UVGI).  
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ClorDiSys’ UV systems use low-pressure, 
mercury-arc germicidal lamps which are 
designed to produce the highest amounts of UV 
radiation - where 90% of energy is typically 
generated at 254nm. This radiation is very close 
to the peak of the germicidal effectiveness 
curve of 265nm, the most lethal wavelength to 
microorganisms. 

What is UV Effective Against? 
UV has been proven effective against a broad spectrum of microorganisms. Viruses contain RNA or DNA 
and are thus susceptible to irradiation. Bacteria and fungi both contain DNA and are similarly 
vulnerable to UV light. Spores are also susceptible to UV. With the longstanding use of UV for 
disinfection, there is a plethora of information regarding dosages necessary to inactivate different 
microorganisms. Bacteria are generally easier to inactivate than viruses, with fungi and spores being 
even harder to inactivate with UV. Please see Appendix 2 for a list of microorganisms against which 
UV-C is effective. 
 
Safety 
As UV-C provides radiation, it is not safe to be in the room while disinfection is taking place. UV-C is 
classified as “reasonably anticipated to be a human carcinogen” by the National Toxicology Program. It 
presents a hazard to skin and eyes, so direct exposure to UV-C is always to be avoided. UV-C is 
blocked by a number of materials, including glass (but not quartz glass) and most clear plastics, so it is 
possible to safely observe a UV-C system if you are looking through a window.  
 
The process is environmentally friendly in that there are no dangerous or toxic chemicals that require 
specialized storage or handling. Since no chemicals are added to the air/water, there are no process 
byproducts to be concerned with. The UV bulbs do not require special handling or disposal either, 
making the system a green alternative to chemical disinfectants. UV-C provides residue free disinfection, 
so there is no concern over dangerous residues that need to be wiped down or neutralized after the 
disinfection occurs.  
 
There has been concern with regard to the residual odors that have been noted after rooms are 
disinfected with ultraviolet light. Sometimes this smell is associated with ozone, a harmful gas. In reality, 
this odor is due to UV-C reacting with human dead skin cells and hair from dust in the room.  
Up to 80% of airborne dust in homes, offices, and other indoor environments is made up of dead human 
skin and hair. Skin and hair cells consist of keratin, a protein, while hair also contains cysteine, an amino 
acid. When high energy UV-C light hits keratin/cysteine molecules, it has enough power to break their 
internal chemical bonds creating smaller, sulfur-containing compounds that fall into the categories of 
thiols. The human nose is extremely sensitive to thiols and can detect them at concentrations as low as 1 
part per billion. Concentrations of thiol molecules after a UV-C disinfection are negligible when 
compared to the published acceptable exposure limit. This means that any odor present after a UV-C 
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disinfection is not dangerous, making the room immediately safe to enter after a UV-C disinfection has 
been performed. 
 

Benefits 
While there are definite limitations to UV-C disinfection technologies, there are many benefits as well. 
Disinfection times are fast, with a typical disinfection cycle lasting about 15 minutes. This allows for 
extremely fast turnover times for rooms or other spaces being disinfected. Due to its simplicity, UV-C 
disinfection is extremely easy to understand. All surfaces within a certain distance will observe an 
assured level of disinfection in a certain amount of time as long as the light is not blocked from shining 
on that surface. It becomes very easy to plan the use of a UV-C disinfection system when the parameters 
and limitations are easily established and understood.  
 
There is no need to establish air flow patterns with UV-C as you would with a fogging system. Nor is 
there a need to isolate rooms from HVAC systems or seal doors. This, along with the lack of chemical 
mixture, makes the preparation time quick to setup and start a UV-C disinfection cycle. 
 
The cost to run UV systems is very low, as systems are powered by regular wall outlets. With that, a 
typical UV-C treatment costs under two cents. UV systems also require little maintenance and upkeep 
due to their simplistic nature. UV bulbs last thousands of hours at their peak output, limiting the need for 
routine consumable change out and maintenance. 
 
Drawbacks 
While UV is effective at inactivating a wide range of microorganisms, there are limitations for its use. As 
it involves light waves, UV operates in a “line-of-sight” fashion, only irradiating surfaces within its 
sightlines. Surfaces can be blocked from the light if objects are in the way, much like a beach umbrella 
offering protection from the sun. These areas that become blocked from the UV light are commonly 
referred to as shadow areas. Surfaces in these shadow areas do not receive adequate disinfection as 
UV light does not have the ability to reflect well. Shadow areas can be addressed by moving the UV 
light source to a second position to accommodate disinfection of the surfaces blocked from first 
disinfection cycle. UV light also does not penetrate well into organic materials, so for best results, UV-C 
should be used after a standard cleaning of the room to remove any organic materials from surfaces. 
 
Distance also plays a factor into the efficacy of UV light. The strength of the UV-C light decreases the 
further away it gets from the light source, following the inverse square law. This means that at twice the 
distance, the UV-C will have ¼ of its power that was present at the original reference point. This 
relationship limits how far a single source of UV light is effective before it is too weak to provide 
adequate disinfection. Most systems deal with this by quantifying their UV-C output at a given distance, 
and using that distance to generate treatment times. Sensors are available which can measure the UV-C 
output of the UV systems at any location, such that adequate treatment times can be interpreted. 
 

Applications 
UV light can safely be used for a variety of disinfection applications. Systems are available to disinfect 
rooms and high traffic areas with common touchpoints, ambulances and other emergency service 
vehicles, ductwork, tools or equipment inside a disinfection chamber, continuous pass-through conveyors, 
and many more. It has long been available for biological safety cabinet disinfection and home water 
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treatment as well. It provides a chemical free method of disinfecting soundproofing materials and 
sensitive electronics that are traditionally chemically incompatible.  
 

Appendix 1 – Historical Use of UV Light for Disinfection 
For the past 100 years science has recognized the bactericide effects of the ultraviolet area of the 
electromagnetic spectrum. Below are some key contributions over the years:  

1855 Arloing and Daclaux demonstrated sunlight killed Bacillus anthracis and Tyrothrix scaber 

1877 Downes and Blunt reported bacteria were inactivated by sunlight – violet blue spectrum 
most effective 

1889 Widmark confirmed UV rays from arc lamps were responsible for inactivation 

1892 Geisler used a prism and heliostat to show sunlight and electric arc lamps are lethal to 
Bacillus Typhosus 

1903 Banard and Morgan determined UV spectrum 226-328 nm is biocidal 

1932 Ehris and Noethling isolated biocidal spectrum to 253.7 nm 

1957 Riley proves effectiveness for Tb control 

1994 CDC acknowledges UV effectiveness for Tb control 

1999 WHO recommends UVGI for Tb control 

2014 UV-C used as part of the terminal cleaning procedure within the Nebraska Biocontainment 
Unit upon ebola patient discharge 

2020 UV-C Disinfection recommended for the disinfection of N95 masks and other PPE during 
SARS-CoV-2 pandemic. 

 
Appendix 2 – Ultraviolet Light Exposure Dosage 

The degree of inactivation by ultraviolet radiation is directly related to the UV dose applied. The UV 
dose is the product of UV intensity [I] (expressed as energy per unit surface area) and exposure time 
[T]. Therefore: DOSE = I x T 

This dose is commonly expressed as millijoule per square centimeter (mJ/cm2).  

The reduction of micro-organisms is classified using a logarithmic scale. A single log reduction is a 90% 
reduction of organisms. A two log reduction is a 99% reduction of organisms, followed by a three log 
reduction (99.9%), etc. The UV-C exposure dosage needed for each level of reduction is shown in the 
table along with the published reference where the data came from. 
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UV Dose (mJ/cm2) for Various Reduction Levels 

Spore 90% 99% 99.9% 99.99% 99.999% 99.9999% Reference 
Bacillus anthracis spores – Anthrax spores  24.32 48.64 72.96 97.28   UV-Light.co.UK 
Bacillus magaterium sp. spores 2.73 5.46 8.19 10.92   UV-Light.co.UK 
Bacillus subtilis  ATCC6633(spores 36 48.6 61 78   Chang et al. 1985 
Clostridioides difficile (C. diff) spores 6.0 12.0 18.0 24.0   UV-Light.co.UK 
Bacterium        
Aeromonas  salmonicida 1.5 2.7 3.1 5.9   Liltved and 

Landfald 1996 
Aeromonas hydrophila ATCC7966 1.1 2.6 3.9 5 6.7 8.6 Wilson et al. 1992 
Bacillus anthracis – Anthrax  4.52 9.04 13.56 18.08   UV-Light.co.UK 
Bacillus magaterium sp. (veg.)  1.3 2.6 3.9 5.2   UV-Light.co.UK 
Bacillus paratyphusus  3.2 6.4 9.6 12.8   UV-Light.co.UK 
Bacillus subtilis  5.8 11.6 17.4 23.2   UV-Light.co.UK 
Campylobacter jejuni ATCC 43429 1.6 3.4 4 4.6 5.9  Wilson et al. 1992 
Citrobacter diversus 5 7 9 11.5 13  Giese and Darby 

2000 
Citrobacter freundii 5 9 13    Giese and Darby 

2000 

Clostridium tetani 13.0 22.0     Light Sources Inc. 
2014 

Corynebacterium diphtheriae  3.37 6.74 10.11 13.48   UV-Light.co.UK 
Ebertelia typhosa  2.14 4.28 6.42 8.56   UV-Light.co.UK 

Escherichia coli 
O157:H7 CCUG  29193 

3.5 4.7 5.5 7   Sommer et al. 
2000 

Escherichia coli O157:H7 <2 <2 2.5 4 8 17 Yaun  et al. 2003 
Halobacterium elongate ATCC33173 0.4 0.7 1    Martin et al. 2000 
Halobacterium salinarum ATCC43214 12 15 17.5 20   Martin et al. 2000 
Klebsiella pneumoniae 12 15 17.5 20   Giese and Darby 

2000 
Klebsiella terrigena ATCC33257 4.6 6.7 8.9 11   Wilson et al. 1992 
Legionella pneumophila ATCC33152 1.9 3.8 5.8 7.7 9.6  Oguma et al.2004 
Leptospiracanicola – infectious Jaundice  3.15 6.3 9.45 12.6   UV-Light.co.UK 
Listeria monocytogenes 15.6      UV-Light.co.UK 
Microccocus candidus  6.05 12.1 18.15 24.2   UV-Light.co.UK 
Microccocus sphaeroides  1.0 2.0 3.0 4.0   UV-Light.co.UK 
Mycobacterium tuberculosis  6.2 12.4 18.6 24.8   UV-Light.co.UK 
MRSA  3.2 6.4 9.6 12.8   UV-Light.co.UK 
Neisseria catarrhalis  4.4 8.8 13.2 17.6   UV-Light.co.UK 
Phytomonas tumefaciens  4.4 8.8 13.2 17.6   UV-Light.co.UK 
Proteus vulgaris  3.0 6.0 9.0 12.0   UV-Light.co.UK 
Pseudomonas  stutzeri 100 150 195 230   Joux  et al. 1999 
Pseudomonas aeruginosa  5.5 11.0 16.5 22.0   UV-Light.co.UK 
Pseudomonas fluorescens  3.5 7.0 10.5 14.0   UV-Light.co.UK 
Salmonella anatum (from human feces) 7.5 12 15    Tosa and Hirata 

1998 
Salmonella derby (from human feces) 3.5 7.5     Tosa and Hirata 

1998 
Salmonella enteritidis  4.0 8.0 12.0 16.0   UV-Light.co.UK 
Salmonella infantis (from human feces) 2 4 6    Tosa and Hirata 

1998 
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Salmonela paratyphi – Enteric fever  3.2  6.4  9.6  12.8   UV-Light.co.UK 
Salmonella typhosa – Typhoid fever  2.15  4.3  6.45  8.6   UV-Light.co.UK 

UV Dose (mJ/cm2) for Various Reduction Levels 
Bacteria 90% 99% 99.9% 99.99% 99.999% 99.9999% Reference 
Salmonella typhimurium  8.0  16.0  24.0  32.0   UV-Light.co.UK 
Sarcina lutea  19.7  39.4 59.1 78.8   UV-Light.co.UK 
Serratia marcescens  2.42  4.84  7.26  9.68   UV-Light.co.UK 
Shigella dyseteriae – Dysentery  2.2  4.4  6.6  8.8   UV-Light.co.UK 
Shigella flexneri – Dysentery  1.7  3.4  5.1  6.8   UV-Light.co.UK 
Shigella paradysenteriae  1.68  3.3  5.04  6.72   UV-Light.co.UK 
Shigella sonnei ATCC9290 3.2 4.9 6.5 8.2   Chang et al. 1985 
Spirillum rubrum  4.4  8.8  13.2  17.6   UV-Light.co.UK 
Staphylococcus albus  1.84  3.68  5.52  7.36   UV-Light.co.UK 
Staphylococcus aureus  2.6  5.2  7.8 10.4   UV-Light.co.UK 
Staphylococcus hemolyticus  2.16  4.32  6.48  8.64   UV-Light.co.UK 
Staphylococcus lactis  6.15  12.3  18.45  24.6   UV-Light.co.UK 
Streptococcus faecalis ATCC29212 6.6 8.8 9.9 11.2   Chang et al. 1985 
Streptococcus viridans  2.0  4.0  6.0  8.0   UV-Light.co.UK 
Vibrio anguillarum 0.5 1.2 1.5 2   Liltved and 

Landfald 1996 
Vibrio comma – Cholera  3.375 6.75 10.125 13.5   UV-Light.co.UK 
Vibrio natriegens 37.5 75 100 130 150  Joux  et al. 1999 
Yersinia enterocolitica ATCC27729 1.7 2.8 3.7 4.6   Wilson et al. 1992 
Yersinia ruckeri 1 2 3 5   Liltved and 

Landfald 1996 

Yeasts        
Brewers yeast  3.3 6.6 9.9 13.2   UV-Light.co.UK 
Common yeast cake  6.0 12.0 18.0 24.0   UV-Light.co.UK 
Saccharomyces carevisiae  6.0 12.0 18.0 24.0   UV-Light.co.UK 
Saccharomyces ellipsoideus  6.0 12.0 18.0 24.0   UV-Light.co.UK 
Saccharomyces spores  8.0 16.0 24.0 32.0   UV-Light.co.UK 

Molds        
Aspergillius flavus  60.0 120.0 180.0 240.0   UV-Light.co.UK 
Aspergillius glaucus  44.0 88.0 132.0 176.0   UV-Light.co.UK 
Aspergillius niger  132.0 264.0 396.0 528.0   UV-Light.co.UK 
Mucor racemosus A  17.0 34.0 51.0 68.0   UV-Light.co.UK 
Mucor racemosus B  17.0 34.0 51.0 68.0   UV-Light.co.UK 
Oospora lactis  5.0 10.0 15.0 20.0   UV-Light.co.UK 
Penicillium digitatum  44.0 88.0 132.0 176.0   UV-Light.co.UK 
Penicillium expansum  13.0 26.0 39.0 52.0   UV-Light.co.UK 
Penicillium roqueforti  13.0 26.0 39.0 52.0   UV-Light.co.UK 
Rhisopus nigricans  111.0 222.0 333.0 444.0   UV-Light.co.UK 

Protozoan        
Chlorella Vulgaris  13.0 26.0 39.0 52.0   UV-Light.co.UK 
Cryptosporidium hominis 3 5.8     Johnson et al. 

2005 
Cryptosporidium parvum 2.4 <5 5.2 9.5   Craik  et al. 2001 
Cryptosporidium parvum,  oocysts, tissue 
culture assay 

1.3 2.3 3.2    Shin  et al. 2000 

Encephalitozoon 
cuniculi,microsporidia 

4 9 13    Marshall et al. 
2003 
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Encephalitozoon 
hellem,microsporidia 

8 12 18    Marshall et al. 
2003 

Encephalitozoon 
intestinalis,microsporidia 

<3 3 <6 6   Huffman et al. 
2002 

UV Dose (mJ/cm2) for Various Reduction Levels 
Protozoan 90% 99% 99.9% 99.99% 99.999% 99.9999% Reference 
Giardia lamblia <10 ~10 <20    Campbell et al. 

2002 
Giardia muris <10 <10 <25 ~60   Belosevic et al. 

2001 
Nematode Eggs  45.0  90.0  135.0  180.0   UV-Light.co.UK 
Paramecium  11.0  22.0  33.0  44.0   UV-Light.co.UK 
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The following table shows the required UV-C exposure dosages necessary for various log reductions of 
viruses.  

UV Dose (mJ/cm2) for Various Reduction Levels 

Virus Host 90% 99% 99.9% 99.99% 99.999% 99.9999% Reference 

Adenovirus 
type 15 

A549 cell line 
(ATCC  CCL-
185) 

40 80 122 165 210  Thompson et al. 2003 

Adenovirus type 2 PLC / PRF / 5 
cell line 

40 78 119 160 195 235 Gerba et al. 2002 
B40-8 (Phage) B. Fragilis 11 17 23 29 35 41 Sommer et al. 2001 
Bacteriophage – E. 
Coli  

 2.6 5.2 7.8 104.0 
  

UV-Light.co.UK 

Calicivirus canine MDCK cell line 7 15 22 30 36  Husman et al. 2004 

Calicivirus feline CRFK cell line 5 15 23 30 39  Thurston-Enriquez et al. 
2003 

Coxsackievirus B3 BGM cell line 8 16 24.5 32.5   Gerba et al. 2002 
Coxsackievirus B5 BGM cell line 9.5 18 27 36   Gerba et al. 2002 
Echovirus I BGM cell line 8 16.5 25 33   Gerba et al. 2002 
Echovirus II BGM cell line 7 14 20.5 28   Gerba et al. 2002 
Hepatitis A HM175 FRhK-4 cell 5.1 13.7 22 29.6   Wilson et al. 1992 
Infectious Hepatitis   5.8 11.6 17.4 232.0   UV-Light.co.UK 
Influenza   3.4 6.8 10.2 136.0   UV-Light.co.UK 

MS2 (Phage) E. coli 
HS(pFamp)R 

 45 75 100 125 155 Thompson et al. 2003 

Norovirus  10 16 22 26 30  Lee et al. 2008 

Parvovirus  2.2 4.6     Cornelis et al. 1982 

PHI X 174  (Phage) E. coli WG 5 3 5 7.5 10 12.5 15 Sommer et al. 2001 
Poliovirus – 
Poliomyelitis  

 3.15 6.3 9.45 126.0   UV-Light.co.UK 

Poliovirus 1 CaCo2 cell-line 
(ATCC HTB37) 

7 17 28 37   Thompson et al. 2003 

PRD-1 (Phage) S. typhimurium 
Lt2 

9.9 17.2 23.5 30.1   Meng and Gerba 1996 

Reovirus Type 1 
Lang strain 

N/A 16 36     Harris  et al. 1987 

Reovirus-3 Mouse L-60 11.2 22.4     Rauth 1965 
Rotavirus MA104  cells 20 80 140 200   Caballero et al. 2004 

Rotavirus SA-11 MA-104  cell 
line 

9.1 19 26 36 48  Wilson et al. 1992 

SARS-CoV-2 N/A  5    22 Boston University. 2020 

Staphylococcus 
aureus phage A 
994  (Phage) 

Staphylococcus 
aureus 994 8 17 25 36 47  Sommer et al. 1989 

Tobacco mosaic N/A 240.0 440.0     Light Sources Inc. 2014 
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Appendix 3 – Persistence of Bacteria (As compiled via a Google Search) 
 

Persistence of Clinically Relevant Bacteria 
on Dry Inanimate Surfaces1 

Organism Persistence 

Acinetobacter spp. 3 days to 5 months 
Bordetella pertussis 3-5 days 
Campylobacter jejuni Up to 6 days 
Clostridium difficile (spores) 5 months 
Chlamydia pneumoniae Up to 30 hours 
Chlamydia psittaci 15 days 
Corynebacterium diphtheria 7 days – 6 months 
Corynebacterium pseudotuberculosis 1-8 days 
Escherichia coli 1.5 hours – 16 months 
Enterococcus spp. including VRE and VSE 5 days – 4 months 
Haemophilus influenza 12 days 
Helicobacter pylori Up to 90 minutes 
Klebsiella spp. 2 hours – 30 months 
Listeria spp. 1 day – 4 months 
Mycobacterium bovis Up to 2 months 
Mycobacterium tuberculosis 1 day – 4 months 
Neisseria gonorrhoeae 1-3 days 
Proteus vulgaris 1-2 days 
Pseudomonas aeruginosa 6 hours – 16 months; 5 weeks on dry floor 
Salmonella typhi 6 hours – 4 weeks 
Salmonella typhimurium 10 days – 4.2 years 
Salmonella spp. 1 day 

Serratia marcescens 3 days – 2 months; 5 weeks on dry floor 
Shigella spp. 2 days – 5 months 
Staphylococcus aureus, including MRSA 7 days – 7 months 
Streptococcus pneumoniae 1-20 days 
Streptococcus pyogenes 3 days – 6.5 months 
Vibrio cholera 1-7 days 
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